Bioremediation of Bisphenol A and Benzophenone by Glycosylation with Immobilized Marine Microalga Pavlova sp.

نویسندگان

  • Kei Shimoda
  • Hiroki Hamada
چکیده

Cultured cells of Pavlova sp. glycosylated bisphenol A to its mono-glucoside, 2-(4-beta-D-glucopyranosyloxyphenyl)-2-hydroxyphenylpropane (9%). Use of immobilized Pavlova cells in sodium alginate gel improved yield of the product (17%). On the other hand, Pavlova cell cultures converted benzophenone into diphenylmethanol (49%) and diphenylmethyl beta-D-glucopyranoside (6%). Incubation of benzophenone with immobilized Pavlova cells gave products in higher yields; the yields of diphenylmethanol and diphenylmethyl beta-D-glucopyranoside were 85 and 15%, respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bioremediation of Bisphenol A by Glycosylation with Immobilized Marine Microalga Amphidinium crassum ——Bioremediation of Bisphenol a by Immobilized Cells

Glycosylation of bisphenol A, which is an endocrine disrupting chemical, was investigated using immobilized marine microalga and plant cells from the viewpoint of bioremediation of bisphenol A. Immobilized marine microalga of Amphidinium crassum glucosylated bisphenol A to the corresponding glucoside. On the other hand, bisphenol A was glycosylated to its glucoside, diglycoside, gentiobioside, ...

متن کامل

Phytoremediation of Benzophenone and Bisphenol A by Glycosylation with Immobilized Plant Cells

Benzophenone and bisphenol A are environmental pollutions, which have been listed among "chemicals suspected of having endocrine disrupting effects" by the World Wildlife Fund, the National Institute of Environmental Health Sciences in the USA and the Japanese Environment Agency. The cultured cells of Nicotiana tabacum glycosylated benzophenone to three glycosides, 4-O-beta-D-glucopyranosylbenz...

متن کامل

Bioremediation of Fluorophenols by Glycosylation with Immobilized Marine Microalga Amphidinium Crassum

Fluorophenols are used as agrochemicals and released into environment as pollutants. Cultured marine microalga Amphidinium crassum (Gymnodinium) glucosylated 2-fluorophenol (1), 3-fluorophenol (2), and 4-fluorophenol (3) to the corresponding β-D-glucosides, ie, 2-fluorophenyl β-D-glucoside (4, 60 μg/g cells), 3-fluorophenyl β-D-glucoside (5, 20 μg/g cells), and 4-fluorophenyl β-D-glucoside (6, ...

متن کامل

Comparative modelling of 3D-structure of Geobacter sp. M21 (a metal reducing bacteria) Mn-Fe superoxide dismutase and its binding properties with bisphenol-A, aminotriazole and ethylene-diurea

Superoxide dismutase play important roles in iron-respiratory bacteria such as Geobacteraceae as an antioxidant defense, and probably an effective enzyme of electron transfer network. Regarding the application of iron-respiratory bacteria in environmental biotechnology particularly biodegradation and bioremediation, understanding the mechanism of inhibition/induction of superoxide dismutase by ...

متن کامل

Plant Biotechnology 23, 291–296 (2006)

Bisphenol A and benzophenone, diphenyl compounds, were regioselectively hydroxylated, reduced, and glycosylated by the cultured plant cells of Eucalyptus perriniana. Three known biotransformation products and two new products, 2-(3-b-D-glucopyranosyloxy-4-hydroxyphenyl)-2-(4-b-D-glucopyranosyloxyphenyl)propane and 2-(3b-D-glucopyranosyloxy-4-b-D-glucopyranosyloxyphenyl)-2-(4-hydroxyphenyl)propa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2009